MASTER BUILDERS

Condensation – The Modelling of moisture accumulation and mould growth

Dr Mark Dewsbury – Senior Lecturer,

University of Tasmania

mark.dewsbury@utas.edu.au

BUILDING IN A TIME OF CHANGE

MASTER BUILDERS VICTORIA

UTAS

School of Architecture & Design Science, Engineering & Technology

Our expectations have changed – Class 1

School of Architecture & Design Science, Engineering & Technology

Our expectations have changed – Class 2 Comfort Wealth Materials

School of Architecture & Design Science, Engineering & Technology

What causes condensation?

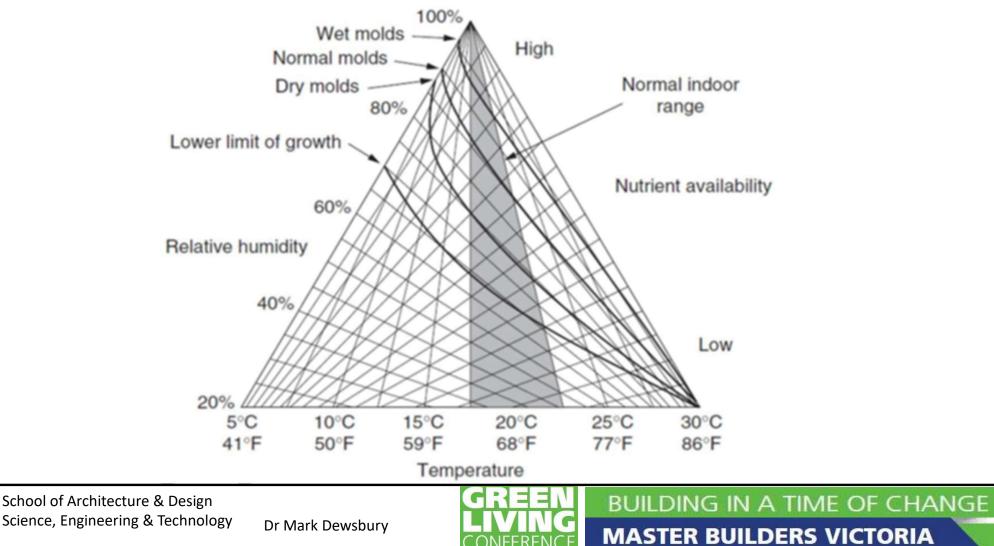
- 1. Heat
- 2. Moisture (water vapour in the air and materials)
- 3. Thermal bridging

How might we manage condensation?

- 1. Heat fully separate hot and cold elements
- 2. Moisture control the amount of water vapour in the air and control where and how water vapour moves

School of Architecture & Design Science, Engineering & Technology

Can we stop condensation


1. NO

- 2. We need to understand
 - where it forms
 - manage how much may form, and
 - design in 'drying potential'

What does mould need to grow

How might we limit mould to the microscopic level?

- 1. Control the amount of water vapour in the air
- 2. Control where and how water vapour moves
- 3. Fully separate hot and cold elements

Can we stop Mould growth?

- 1. Mould is every where but at the optical microscopic level. In essence it is in equilibrium with other elements in the environment.
- 2. We want to design the built fabric such that mould does not become out of balance (become optically visible)

School of Architecture & Design Science, Engineering & Technology

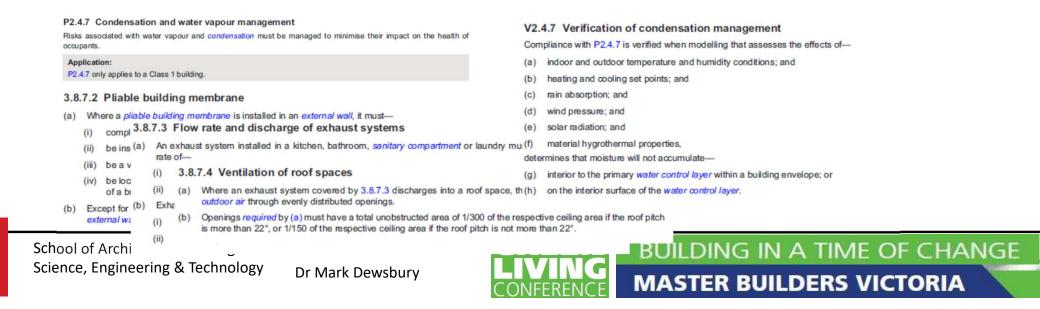
The International hygrothermal journey

- BS 5250 1975
- DIN 4108 1952, DIN 4108-3 1981, DIN 4108-4 1981
- ASHRAE 160 2009
- Canada Condo Crisis 1980's and 1990's
- New Zealand Leaky Buildings 1990's NZ\$46 B
- Australia 2019

School of Architecture & Design Science, Engineering & Technology

The Australian hygrothermal journey

- But are these problems new?
- Since the 1960's, the focus has been to blame how the occupants live and not the building
- 1964... revised 1974 NBTC NSB 32: House design for Australian cold-winter climates
- 1964 ... revised 1970 NBTC NSB 61: Condensation in dwellings
- 1964 NBTC NSB 78: Some condensation problems
- BUT occupant expectations in Australia have been quite low. Until very recently there was no Australian discussion regarding how Mould affects human health.



School of Architecture & Design Science, Engineering & Technology

NCC 2019

- In 2019 we gained some climate type limited regulations regarding condensation and mould in Australian homes.
- Permeability and ventilation
- For many Australian climate zones, we are now required to consider roof space ventilation, permeable membranes in external walls and some forms of exhaust ventilation.

NCC 2022

- Mould index of 3
- In 2022 we gained some more climate type limited regulations regarding condensation and mould in Australian homes.
- For more Australian climate zones, we are now required to consider roof space ventilation, permeable membranes in external walls and some forms of exhaust ventilation.

H407	Condensation and water vapour ma	r management				
			[New for 2022]			
The Objective is to reduce the likelihood of <i>condensation</i> or wat <i>amenity</i> for building occupants.		Ve	rification Methods			
		H4	V5 Verification of condensation management			
			[2019: V2.4.7]			
		(1) Compliance with <i>Performance Requirement</i> H4P7 is verified for a roof or <i>external wall</i> assembly when it is determined that a mould index of greater than 3, as defined by Section 6 of AIRAH DA07, does not occur on—				
		(a) the interior surface of the water control layer, or				
			(b) the surfaces of building fabric components interior to the water control layer.			
		(2)	The calculation method for (1) must use—			
			(a) input assumptions in accordance with AIRAH DA07; and			
			(b) the intermediate method for calculating indoor design humidity in Section 4.3.2 of AIRAH DA07.			

School of Architecture & Design Science, Engineering & Technology

What is this mould index

Index (MI)	Growth rate	Description
0	No growth	Spores not activated
1	Small amounts of mould on surface (microscope)	Initial stages of growth
(microscope) 10%–30% coverage of mould on surface		Initial stages of growth
		New spores produced
4	30%–70% coverage of mould on surface (visual)	Moderate growth
 5 >70% coverage of mould on surface (visual) 6 Very heavy and tight growth 		Plenty of growth
		Coverage around 100%

School of Architecture & Design Science, Engineering & Technology

Mould on walls

School of Architecture & Design Science, Engineering & Technology

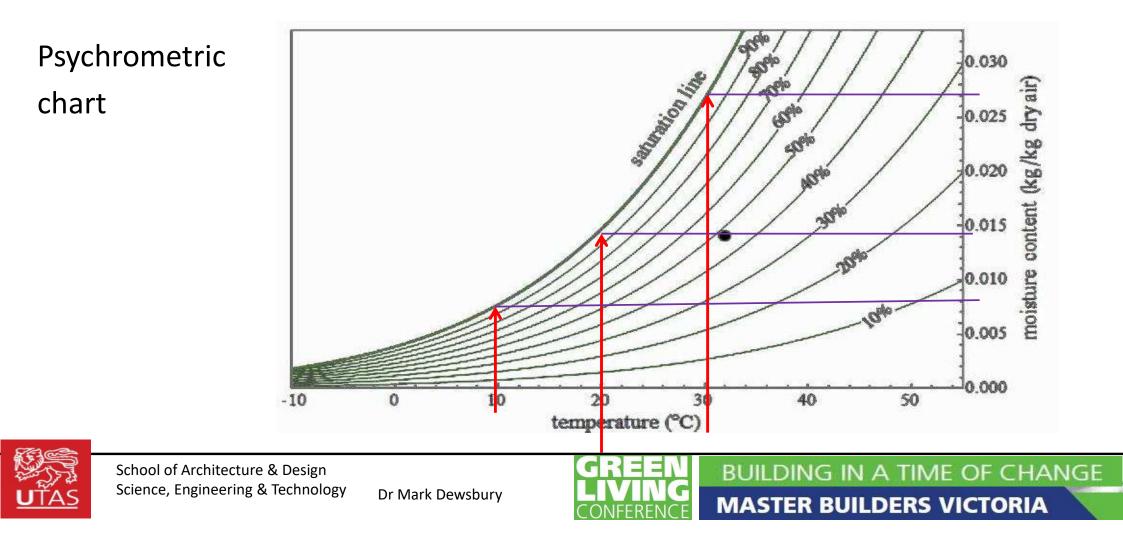
Mould in walls

School of Architecture & Design Science, Engineering & Technology

Mould in Roof spaces

School of Architecture & Design Science, Engineering & Technology

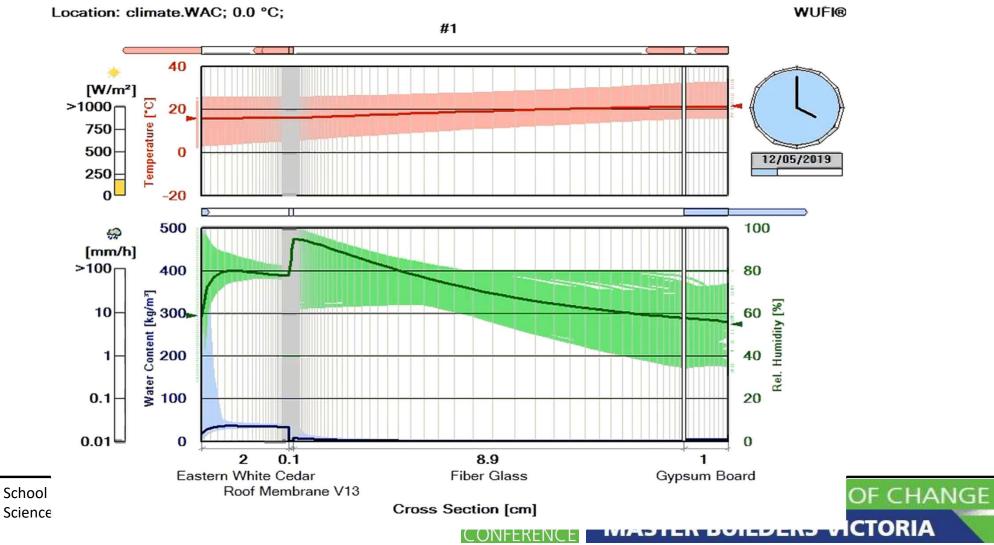
Mould in subfloors



School of Architecture & Design Science, Engineering & Technology

Is this linked to energy efficiency

Is this linked to energy efficiency

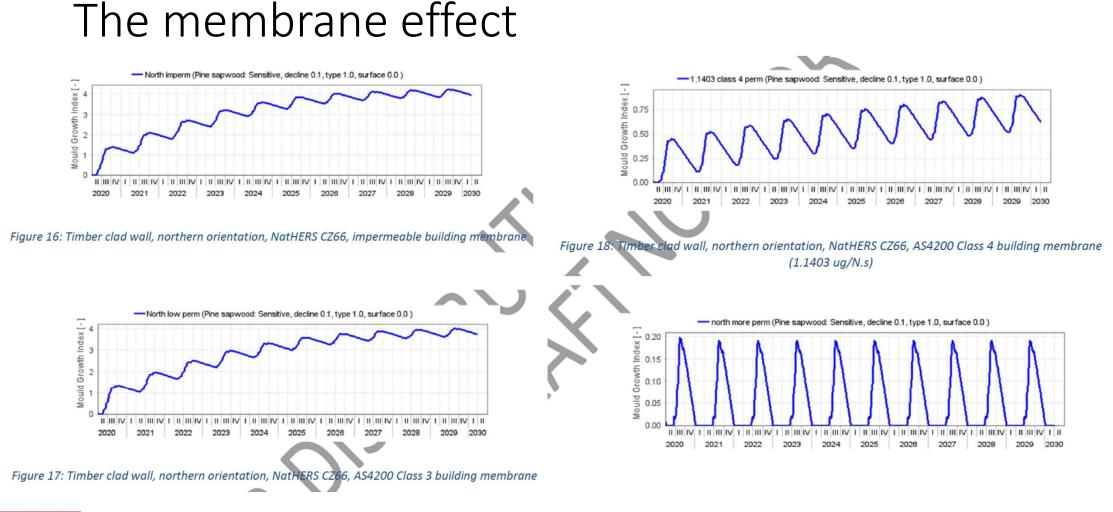

Air Temperature (°C)	Relative Humidity (%)	Dewpoint Temperature (°C)	Water Vapour Pressure (PA)
21 60		13	1496
21	70	15	1703
21	80	17	1935
23	70	17	1935
23	80	19	2194
24	70	18	2061
16	55	7	1001
10	65	3	758

School of Architecture & Design Science, Engineering & Technology

Heat and moisture simulation

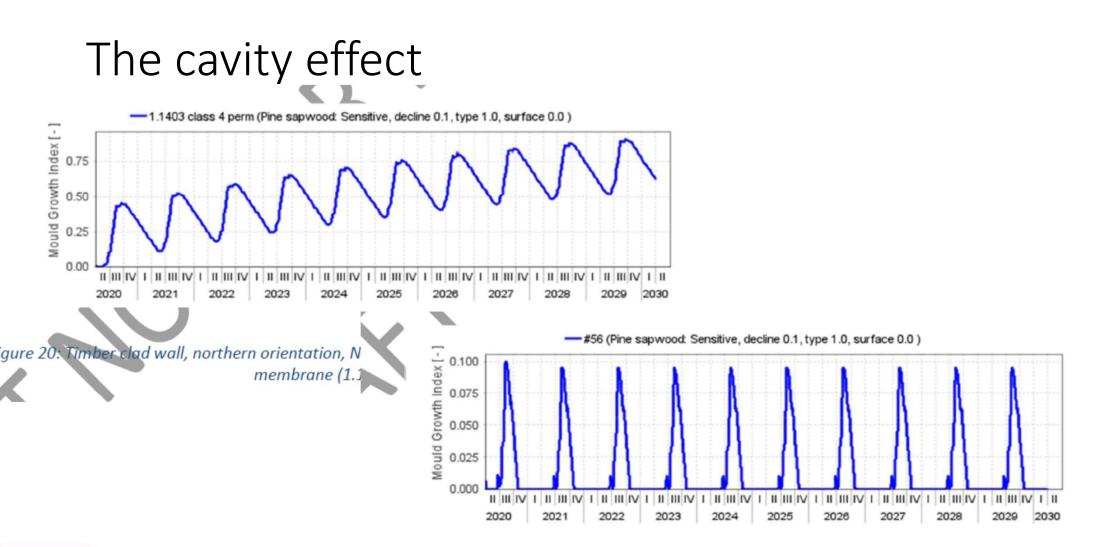
NatHERS Climates	21	22	27	60	61	63	64 (&62)	66
7 Star 27% glass to floor area	R2.7 wall batts	R2.7 wall batts	R3.5 wall batts	R3.5 wall batts	R3.5 wall batts	R3.2 wall batts	R3.2 wall batts	R3.2 wall batts
	R6.0 Ceiling batt	R8.0 Ceiling batt	R6.0 Ceiling batt	R6.0 Ceiling batt				
	Insul Partition	Insul Partition	Insul Partition	Insul Partition				
	Garage/Living	Garage/Living	Garage/Living	Garage/Living	Garage/Living	Garage/Living	Garage/Living	Garage/Living
	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living
	Habitable	Habitable	Habitable	Habitable	Habitable	Habitable	Habitable	Habitable
	AL DG 4/10Ar/4EA	AL DG 4/10Ar/4EA	AL DG 4-12Ar-4ET	AL DG 4-12Ar-4ET	AL DG 4/10/4EA	AL DG 4/16Ar/4	AL DG 4/16Ar/4	AL DG 4-12Ar-4ET
	U = 3.5, SHGC = 0.53	U = 3.5, SHGC = 0.53	U = 3.1, SHGC = 0.49	U = 3.1, SHGC = 0.49	U = 3.7, SHGC = 0.53	U = 3.2, SHGC = 0.53	U = 3.2, SHGC = 0.53	U = 3.1, SHGC = 0.49
	Non-habitable	Non-habitable	Non-habitable	Non-habitable	Non-habitable	Non-habitable	Non-habitable	Non-habitable
	AL SG	AL SG	AL SG	AL SG				
	U = 5.4, SHGC = 0.58	U = 5.4, SHGC = 0.58	U = 5.4, SHGC = 0.58	U = 5.4, SHGC = 0.58				
7 Star 21% glass	R2.7 wall batts	R2.7 wall batts	R2.0 wall battsl	R2.0 batts in wall	R2.5 batts in wall	R2.7 batts in wall	R2.7 batts in wall	R2.7 batts in wall
to floor area	R4.2 Ceiling batt	R4.2 Ceiling batt	R5.0 Ceiling batt	R5.0 Ceiling batt	R6.0 Ceiling batt	R6.0 Ceiling batt	R6.0 Ceiling batt	R6.0 Ceiling batt
	Insulated Partition	Insul Partition	Insul Partition	Insul Partition	Insul Partition	Insul Partition	Insul Partition	Insul Partition
	Garage/Living	Garage/Living	Garage/Living	Garage/Living	Garage/Living	Garage/Living	Garage/Living	Garage/Living
	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living	Laundry/Living
	Habitable	Habitable	Habitable	Habitable	Living	Living	Habitable	Habitable
	AL DG 4/10Ar/4EA	AL DG 4/10Ar/4EA	AL DG 4-12Ar-4ET	Al DG 4/10Ar/4EA	AL DG 4/10Ar/4EA	AL DG 4/16Ar/4	AL DG 4/16Ar/4	AL DG 4/10Ar/4EA
	U = 3.5, SHGC = 0.53	U = 3.5, SHGC = 0.53	U = 3.1, SHGC = 0.49	U = 3.5, SHGC = 0.53	U = 3.5, SHGC = 0.53	U = 3.2, SHGC = 0.53	U = 3.2, SHGC = 0.53	U = 3.5, SHGC = 0.53
	Non habitable	Non habitable	Non habitable	Non habitable	Beds	Beds	Non habitable	Non-habitable
	AL SG 3Clr	AL SG 3Clr	AL SG 3Clr	AL SG 3Clr	AL DG 4/10/4	AL DG 4/10Ar/4	AL SG 3Clr	AL SG
	U = 6.5, SHGC = 0.66	U = 4.2, SHGC = 0.57	U = 4.1, SHGC = 0.57	U = 6.5, SHGC = 0.66	U = 5.4, SHGC = 0.58			
					Non habitable AL SG 3Clr U = 6.5, SHGC = 0.66	Non habitable AL DG 4/10/4 U = 4.2, SHGC = 0.57		

6 Stars >> 7 Stars

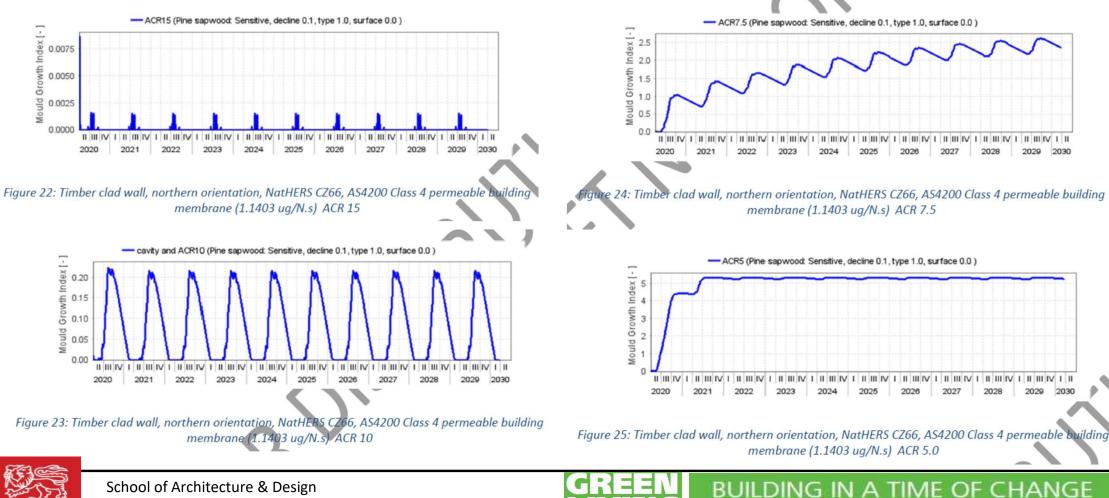


School of Architecture & Design Science, Engineering & Technology

Dr Mark Dewsbury


MASTER BUILDERS VICTORIA

School of Architecture & Design Science, Engineering & Technology



School of Architecture & Design Science, Engineering & Technology

The airtightness effect

MASTER BUILDERS VICTORIA

School of Architecture & Design Science, Engineering & Technology

Possible strategies – More permeable

Technical Details			
water vapour transmission resistance	less than 0,10m		
Permeance	more than 33 US perms		
Mvtr	less than 0,5MNs/g		
water-resistance:rainproof	Water column more than 2500mm		
surface weight:	170g/m2		
diffusion ability:	more than 400g/m2 24h		
UV stability and outdoor exposure:	3 months		
fire rating:	B2		
tear-resistance:	more than 390N/5cm		
resistance to nails tearing out:	more than 300N		
cover-fleece:	polypropylene microfibre		
membrane:	monolithic TEEE film		
non-woven fabric:	polypropylene microfibre		
reinforcement:	polypropylene fabric		
School of Architering & Design			

DuPont[™] Tyvek[°] HomeWrap[°]

PHYSICAL PROPERTIES DATA SHEET

Properties Australian Building Code and AS/NZS4200	Test Method	Requirement	DuPont™ Tyvek® HomeWrap® (1055B)
Duty Classification	Table 1, AS/NZS 4200.1:2017	Light wall	Light wall
Vapour Permeance	ASTM E96 – B	>1.14µg/N.s	> 2.0µg/N.s
Vapour Resistance	ASTM E96 – B	<0.88MN.s/g	<0.5MN.s/g
Vapour Control Classification	AS/NZS 4200.1:2017 Table 4	Class 4	Class 4 (low)
Emittance Classification	AS/NZS 4201.5	Non-Reflective	Non-Reflective
Mechanical Strength			

It is good practice for Enviroseal[™] ProctorWrap[™] RW to be separated from the exterior cladding by a cavity to allow for the drainage of any moisture that has penetrated the exterior cladding or condensation that may form on the rear face of the cladding. Adequate provision for the drainage, absorption or diffusion of moisture is required exterior to the membrane to ensure that moisture is not left trapped between the Enviroseal[™] ProctorWrap[™] RW and the external cladding. This is especially important for vapour tight or non-absorbent claddings such as steel.

Care should be taken when installing insulation so that this does not restrict drainage within the cavity.

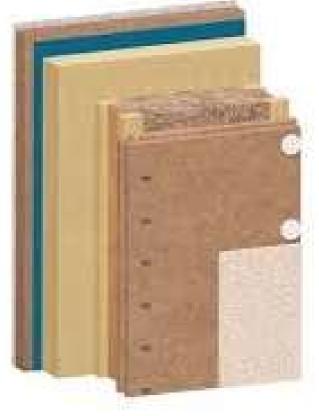
CLASSIFICATIONS

	CRITERIA	REFERENCE	RESULT
	DUTY CLASSIFICATION	Table 1 AS/NZS 4200.1:1994	Light*
-	VAPOUR PERMEABILITY	ASTM E96	4.5μg/N.s
22	VAPOUR RESISTANCE	ASTM E96	0.22MN.s/g
	VAPOUR BARRIER CLASSIFICATION	ASTM E96	Low
ľ –	EMITTANCE	AS/NZS 4201.5	Non-reflective
	WATER BARRIER	AS/NZS 4201.4	High

Possible strategies – Interior membranes

Figure 10.68: Installation of INTELLO® PLUS at wall sections

Figure 10.69: Stapling of INTELLO[®] PLUS. Photo courtesy of Bright Haus



School of Architecture & Design Science, Engineering & Technology

Possible strategies – EIFS

School of Architecture & Design Science, Engineering & Technology

Canadian Code: Part - 9.36.5.3. Compliance stresses that it is not the occupant's role to manage vapour and condensation but the built fabric, & is not dependent on occupant interaction

School of Architecture & Design Science, Engineering & Technology

GREEN LIVING

Td = T - ((100-RH)/5)

Condensation – The Modelling of moisture accumulation and mould growth

Dr Mark Dewsbury – Senior Lecturer,

University of Tasmania

mark.dewsbury@utas.edu.au

School of Architecture & Design Science, Engineering & Technology

